Hematopoietic Protein-1 Regulates the Actin Membrane Skeleton and Membrane Stability in Murine Erythrocytes
نویسندگان
چکیده
Hematopoietic protein-1 (Hem-1) is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein) complex, which regulates filamentous actin (F-actin) polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1⁻/⁻ erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1⁻/⁻ erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A), which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes.
منابع مشابه
Stabilization of F-actin by tropomyosin isoforms regulates the morphology and mechanical behavior of red blood cells
The short F-actins in the red blood cell (RBC) membrane skeleton are coated along their lengths by an equimolar combination of two tropomyosin isoforms, Tpm1.9 and Tpm3.1. We hypothesized that tropomyosin's ability to stabilize F-actin regulates RBC morphology and mechanical properties. To test this, we examined mice with a targeted deletion in alternatively spliced exon 9d of Tpm3 (Tpm3/9d-/- ...
متن کاملRED CELLS, IRON, AND ERYTHROPOIESIS Adducin forms a bridge between the erythrocyte membrane and its cytoskeleton and regulates membrane cohesion
The erythrocyte membrane skeleton is the best understood cytoskeleton. Because its protein components have homologs in virtually all other cells, the membrane serves as a fundamental model of biologic membranes. Modern textbooks portray the membrane as a 2-dimensional spectrin-based membrane skeleton attached to a lipid bilayer through 2 linkages: band 3–ankyrin– spectrin and glycophorin C–prot...
متن کاملAdducin forms a bridge between the erythrocyte membrane and its cytoskeleton and regulates membrane cohesion.
The erythrocyte membrane skeleton is the best understood cytoskeleton. Because its protein components have homologs in virtually all other cells, the membrane serves as a fundamental model of biologic membranes. Modern textbooks portray the membrane as a 2-dimensional spectrin-based membrane skeleton attached to a lipid bilayer through 2 linkages: band 3-ankyrin-beta-spectrin and glycophorin C-...
متن کاملHeadpiece domain of dematin is required for the stability of the erythrocyte membrane.
Dematin is an actin-binding and bundling protein of the erythrocyte membrane skeleton. Dematin is localized to the spectrin-actin junctions, and its actin-bundling activity is regulated by phosphorylation of cAMP-dependent protein kinase. The carboxyl terminus of dematin is homologous to the "headpiece" domain of villin, an actin-bundling protein of the microvillus cytoskeleton. The headpiece d...
متن کاملRole of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane
The platelet plasma membrane is lined by a membrane skeleton that appears to contain short actin filaments cross-linked by actin-binding protein. Actin-binding protein is in turn associated with specific plasma membrane glycoproteins. The aim of this study was to determine whether the membrane skeleton regulates properties of the plasma membrane. Platelets were incubated with agents that disrup...
متن کامل